Artificial Intelligence for Business - Course

(AI-BUS.AP1.E0T)
Lessons
TestPrep
Get A Free Trial

Skills You’ll Get

1

Preface

  • About This eBook
  • Foreword
2

What Is Artificial Intelligence?

  • What Is Intelligence?
  • Testing Machine Intelligence
  • The General Problem Solver
  • Strong and Weak Artificial Intelligence
  • Artificial Intelligence Planning
  • Learning over Memorizing
  • Lesson Takeaways
3

The Rise of Machine Learning

  • Practical Applications of Machine Learning
  • Artificial Neural Networks
  • The Fall and Rise of the Perceptron
  • Big Data Arrives
  • Lesson Takeaways
4

Zeroing in on the Best Approach

  • Expert System Versus Machine Learning
  • Supervised Versus Unsupervised Learning
  • Backpropagation of Errors
  • Regression Analysis
  • Lesson Takeaways
5

Common AI Applications

  • Intelligent Robots
  • Natural Language Processing
  • The Internet of Things
  • Lesson Takeaways
6

Putting AI to Work on Big Data

  • Understanding the Concept of Big Data
  • Teaming Up with a Data Scientist
  • Machine Learning and Data Mining: What’s the Difference?
  • Making the Leap from Data Mining to Machine Learning
  • Taking the Right Approach
  • Lesson Takeaways
7

Weighing Your Options

  • Lesson Takeaways
8

What Is Machine Learning?

  • How a Machine Learns
  • Working with Data
  • Applying Machine Learning
  • Different Types of Learning
  • Lesson Takeaways
9

Different Ways a Machine Learns

  • Supervised Machine Learning
  • Unsupervised Machine Learning
  • Semi-Supervised Machine Learning
  • Reinforcement Learning
  • Lesson Takeaways
10

Popular Machine Learning Algorithms

  • Decision Trees
  • k-Nearest Neighbor
  • k-Means Clustering
  • Regression Analysis
  • Näive Bayes
  • Lesson Takeaways
11

Applying Machine Learning Algorithms

  • Fitting the Model to Your Data
  • Choosing Algorithms
  • Ensemble Modeling
  • Deciding on a Machine Learning Approach
  • Lesson Takeaways
12

Words of Advice

  • Start Asking Questions
  • Don’t Mix Training Data with Test Data
  • Don’t Overstate a Model’s Accuracy
  • Know Your Algorithms
  • Lesson Takeaways
13

What Are Artificial Neural Networks?

  • Why the Brain Analogy?
  • Just Another Amazing Algorithm
  • Getting to Know the Perceptron
  • Squeezing Down a Sigmoid Neuron
  • Adding Bias
  • Lesson Takeaways
14

Artificial Neural Networks in Action

  • Feeding Data into the Network
  • What Goes on in the Hidden Layers
  • Understanding Activation Functions
  • Adding Weights
  • Adding Bias
  • Lesson Takeaways
15

Letting Your Network Learn

  • Starting with Random Weights and Biases
  • Making Your Network Pay for Its Mistakes: The Cost Function
  • Combining the Cost Function with Gradient Descent
  • Using Backpropagation to Correct for Errors
  • Tuning Your Network
  • Employing the Chain Rule
  • Batching the Data Set with Stochastic Gradient Descent
  • Lesson Takeaways
16

Using Neural Networks to Classify or Cluster

  • Solving Classification Problems
  • Solving Clustering Problems
  • Lesson Takeaways
17

Key Challenges

  • Obtaining Enough Quality Data
  • Keeping Training and Test Data Separate
  • Carefully Choosing Your Training Data
  • Taking an Exploratory Approach
  • Choosing the Right Tool for the Job
  • Lesson Takeaways
18

Harnessing the Power of Natural Language Processing

  • Extracting Meaning from Text and Speech with NLU
  • Delivering Sensible Responses with NLG
  • Automating Customer Service
  • Reviewing the Top NLP Tools and Resources
  • Lesson Takeaways
19

Automating Customer Interactions

  • Choosing Natural Language Technologies
  • Review the Top Tools for Creating Chatbots and Virtual Agents
  • Lesson Takeaways
20

Improving Data-Based Decision-Making

  • Choosing Between Automated and Intuitive Decision-Making
  • Gathering Data in Real Time from IoT Devices
  • Reviewing Automated Decision-Making Tools
  • Lesson Takeaways
21

Using Machine Learning to Predict Events and Outcomes

  • Machine Learning Is Really about Labeling Data
  • Looking at What Machine Learning Can Do
  • Use Your Power for Good, Not Evil: Machine Learning Ethics
  • Review the Top Machine Learning Tools
  • Lesson Takeaways
22

Building Artificial Minds

  • Separating Intelligence from Automation
  • Adding Layers for Deep Learning
  • Considering Applications for Artificial Neural Networks
  • Reviewing the Top Deep Learning Tools
  • Lesson Takeaways

Why Do Learners Love This Course?

Any questions?
Check out the FAQs

Still have unanswered questions and need to get in touch?

Contact Us Now

Related Courses

All Courses
scroll to top