Big Data

(UOP-DSC460.AE1)
Lessons
Lab
Lab (Add-on)
TestPrep
Get A Free Trial

Skills You’ll Get

1

Introduction, Storage Concepts and NoSQL Database

  • Understanding Big Data
  • Evolution of Big Data
  • Failure of Traditional Database in Handling Big Data
  • 3 Vs of Big Data
  • Sources of Big Data
  • Different Types of Data
  • Big Data Infrastructure
  • Big Data Life Cycle
  • Big Data Technology
  • Big Data Applications
  • Big Data Use Cases
  • Cluster Computing
  • Distribution Models
  • Distributed File System
  • Relational and Non‐Relational Databases
  • Scaling Up and Scaling Out Storage
  • Introduction to NoSQL
  • Why NoSQL
  • CAP Theorem
  • ACID
  • BASE
  • Schemaless Databases
  • NoSQL (Not Only SQL)
  • Migrating from RDBMS to NoSQL
2

Big Data Processing, Management, and Cloud Computing

  • Data Processing
  • Shared Everything Architecture
  • Shared‐Nothing Architecture
  • Batch Processing
  • Real‐Time Data Processing
  • Parallel Computing
  • Distributed Computing
  • Big Data Virtualization
  • Cloud Computing Types
  • Cloud Services
  • Cloud Storage
  • Cloud Architecture
3

Driving Big Data with Hadoop Tools and Technologies

  • Apache Hadoop
  • Hadoop Storage
  • Hadoop Computation
  • Hadoop 2.0
  • HBASE
  • Apache Cassandra
  • SQOOP
  • Flume
  • Apache Avro
  • Apache Pig
  • Apache Mahout
  • Apache Oozie
  • Apache Hive
  • Hive Architecture
  • Hadoop Distributions
4

Big Data Analytics

  • Terminology of Big Data Analytics
  • Big Data Analytics
  • Data Analytics Life Cycle
  • Big Data Analytics Techniques
  • Semantic Analysis
  • Visual analysis
  • Big Data Business Intelligence
  • Big Data Real‐Time Analytics Processing
  • Enterprise Data Warehouse
  • Introduction to Machine Learning
  • Machine Learning Use Cases
  • Types of Machine Learning
5

Mining Data Streams, Cluster Analysis and Big Data Visualization

  • Itemset Mining
  • Association Rules
  • Frequent Itemset Generation
  • Itemset Mining Algorithms
  • Maximal and Closed Frequent Itemset
  • Mining Maximal Frequent Itemsets: the GenMax Algorithm
  • Mining Closed Frequent Itemsets: the Charm Algorithm
  • CHARM Algorithm Implementation
  • Data Mining Methods
  • Prediction
  • Important Terms Used in Bayesian Network
  • Density-Based Clustering Algorithm
  • DBSCAN
  • Kernel Density Estimation
  • Mining Data Streams
  • Time Series Forecasting
  • Clustering
  • Distance Measurement Techniques
  • Hierarchical Clustering
  • Analysis of Protein Patterns in the Human Cancer‐Associated Liver
  • Recognition Using Biometrics of Hands
  • Expectation Maximization Clustering Algorithm
  • Representative‐Based Clustering
  • Methods of Determining the Number of Clusters
  • Optimization Algorithm
  • Choosing the Number of Clusters
  • Bayesian Analysis of Mixtures
  • Fuzzy Clustering
  • Fuzzy C‐Means Clustering
  • Big Data Visualization
  • Conventional Data Visualization Techniques
  • Tableau
  • Bar Chart in Tableau
  • Line Chart
  • Pie Chart
  • Bubble Chart
  • Box Plot
  • Tableau Use Cases
  • Installing R and Getting Ready
  • Data Structures in R
  • Importing Data from a File
  • Importing Data from a Delimited Text File
  • Control Structures in R
  • Basic Graphs in R

1

Introduction, Storage Concepts and NoSQL Database

  • Discussing Big Data Characteristics
2

Big Data Processing, Management, and Cloud Computing

  • Implementing the Data Processing Cycle
  • Manipulating Data in a DataFrame
  • Modifying Data in a DataFrame
3

Mining Data Streams, Cluster Analysis and Big Data Visualization

  • Implementing the Eclat Algorithm Using R
  • Implementing Apriori Algorithm Using R
  • Implementing K-Means Clustering
  • Creating a Bubble Chart
  • Using the length(), mean(), and median() Functions
  • Using the if-else Statement
  • Using the while Loop

1

Mining Data Streams, Cluster Analysis and Big Data Visualization

  • Implementing Frequent Itemset Mining Using R
  • Determining the Support Count and Confidence Count
  • Creating a Connection in a New Workbook
  • Creating a Bar Chart
  • Creating a Line Chart
  • Creating a Pie Chart
  • Creating a Box Plot
  • Assigning Value to a Variable
  • Using the matrix() Function
  • Using the for Loop

Why Do Learners Love This Course?

Any questions?
Check out the FAQs

Still have unanswered questions and need to get in touch?

Contact Us Now

Related Courses

All Courses
scroll to top